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The evolution of travelling waves in
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In this paper we continue our study of some of the qualitative features of chemical
polymerization processes by considering a reaction—diffusion equation for the
chemical concentration in which the diffusivity vanishes abruptly at a finite
concentration. The effect of this diffusivity cut-off is to create two distinct process
zones; in one there is both reaction and diffusion and in the other there is only
reaction. These zones are separated by an interface across which there is a jump in
concentration gradient. Our analysis is focused on both the initial development of
this interface and the large time evolution of the system into a travelling wave form.
Some distinct differences from our previous analysis of smoothly vanishing diffusivity
are found.
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1. Introduction

In part I (Needham & King 1995) of this work we were concerned with the effects of
concentration dependent diffusivity, which vanished smoothly at a finite con-
centration, on the solutions to a class of reaction—diffusion equations. These
equations are of some interest as they give a qualitative description of some features
of the chemical process of polymerization. Our major interest here is to model, in a
simple manner, the increasing entanglement of long-chain molecules as the polymer
concentration increases. This entanglement causes a reduction in the mobility of the
nascent polymer matrix which is represented by a decreasing diffusivity with a cut-
off at a finite concentration. A number of experimental and theoretical studies of this
phenomena were reviewed in part I, to which reference should be made.

We now turn our attention to the other canonical type of diffusivity cut-off; one

—

< that happens abruptly. From the statistical mechanics viewpoint (Doi & Edwards
> E 1986) this corresponds to regarding the loss of diffusivity in the polymer as a phase
® ) change, akin to the sudden freezing of water as the temperature reduces below a
= threshold value. In the experimental literature known to us, the results available do
= O not seem to be readily capable of distinguishing between smooth and abrupt cut-off
E ©) in diffusivity. We shall show later in this work that an abrupt diffusivity cut-off

w

causes a far more marked jump in the flux of chemical either side of the moving
interface between reaction and reaction—diffusion zones. This jump is an order of

1 Present address: Department of Theoretical Mechanics, University of Nottingham NG7 2RD, U.K.
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magnitude larger in general than in the smoothly vanishing diffusivity case and, as
such, may be subject to experimental observation.

The structure of this paper is similar to that of part I. We begin by formulating
the reaction—diffusion equation as an integral conservation law and proceed to derive
appropriate conditions that hold at the moving interface. Some a priori bounds and
existence results on the concentration and displacement of the interface are also
given, together with a lower bound on the time taken for the concentration to reach
its cut-off level. The initial development of the interface from this critical level is then
considered and reaction rates and data types that allow both singular and slow
frontal motion are identified. The large time behaviour of the system is next shown
to allow the propagation of travelling waves with a speed equal to or above a certain
minimum. By considering asymptotic corrections to the travelling wave forms we
show that, for a wide class of initial data, the minimum speed wave is selected.
Finally a numerical method is developed that solves the moving boundary problem
and confirms the asymptotic structure we have developed.

2. Conservation laws and differential equations

As a model for the polymer reaction process described in the introduction, we
consider a scalar reaction—diffusion process in one space dimension for the variable
u, which we may regard as the concentration of the autocatalytic chemical species
(polymer). The dimensionless integral conservation law governing the evolution of u
in z (space) and ¢ (time) is then given by

z 2y

% Zudxz[lf‘x(u)];f+J R(w) dz 2.1)

for any z, > @, =2 0 and ¢ > 0. The derivation of (2.1) follows directly that given in
part 1. As in part I, we impose the following conditions on E(u), namely,

R(u)e CY(— o0, 00),

R(0)=R(1) =0,

R'(0)=1, R(1)<0, (2.2a—¢)
R(u) >0, ue(0,1), R(u) <0, wue(l,oc0),

Ru) <u, uel0,1],

with =0 being the unreacted state and w =1 being the fully reacted state.
However, the nature of the flux function F(u) is constructed to model the effect of
a rapid reduction in the diffusivity of w when w ~ @, > 0), with 4, being a critical
concentration corresponding to the ‘locking’ of the polymer molecules. We adopt the
form

] u, u <,
F(u) ={dc’ w> i, (2.3)
which leads to a diffusivity D(u) = F’(u) given by
1, u<dg,
Diw) ={O, u > i, (24)

with D(-) being undefined at u = #,. In terms of polymer reactions, we also make the

restriction
0<d, <1, (2.5)

Phil. Trans. R. Soc. Lond. A (1995)
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which ensures that the diffusivity of the polymer drops to zero before the reaction is
completed.

As in part I we examine the initial-boundary value problem which arises when a
localized quantity of u is introduced initially into the otherwise unreacting state
u = 0. Thus we must solve equation (2.1) in x,t > 0 subject to

U g(x), 0<x <o,
u(x, 0) —{0’ e>0. (2.6a)
u,(0,8) =0, ¢t>0, (2.6b)
u(x,t) >0 as x—>o00, t>0. (2.6¢)

The function g(x) is positive, analytic and monotone decreasing in 0 < z < o with
g(o) = 0 and ¢(0) = 1. The dimensionless parameter o measures the support of the
initial data, while u, is the maximum input concentration of u, which for the polymer

problem has 0 < uy < i, (2.7)

As in part T we consider solutions u(x, t) to the initial-boundary value problem (2.1),
(2.6)on D, = {(x,t)eR*: 0 < x < 00,0 < t < T}, which have u(z, t) continuous on D,
while u,, u,,u,, exist and are continuous in D, except along simple differentiable
curves x = s(t), say, upon which u = 4,. However, we require that the limits of
Uy, Uy Uy, €XIS as points on such curves are approached from either side. We denote
this class of functions on D, as O [D;], and refer to this as the class of piecewise-
classical solutions to (2.1), (2.6) on D.

3. Piecewise-classical solutions
Let u(x,t) be a piecewise-classical solution to (2.1), (2.6) on D, and define
D, = {(x,t)eDp: u(x,t) > .},

_={(x,t)€Dyp: u(x,t) < i},
with C denoting the common boundary of D, . It is then clear that u(x, ¢) satisfies the
partial differential equations

Uy = Uy, +R(u), (x,t)eD_, (3.1a)

u, = R(u), (x,t)eD,, (3.1b)
while across C' (which we describe by @ = s(f)) the integral conservation law (2.1)
must be satisfied. On taking x, €D, and x_eD_ we obtain from (2.1)

s(t) z . Ty
j utdx+f uy da+ S[u(x, £)]5- = —ux(x_,t)+j R(u)dz, (3.2)
x_ s(t) z_

where we have put z, > x_, without loss of generality. After taking the limits
x, —~s",x_—>s in (3.2), and noting that we C [D;], we arrive at the condition

Uyle- =0,

where C* denotes the limits on approaching C from D, respectively. Condition (3.3)
must be satisfied simultaneously with

Uler = wl|c- =, (3.4)
at x = s(?).

Phil. Trans. R. Soc. Lond. A (1995)
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We now follow part I in looking for a piecewise-classical solution to the initial-
boundary value problem (2.1), (2.6) in three distinet domains.

Domain A, 0 <x <00, 0<E<t,

U, = Uy, +R(u), 0<u <, (3.5a)
Uo g (), 0<z<o,
u(x,0) = {0’ 2> 0, (3.50)
u,(0,8) =0, 0<t<t, (3.5¢)
u(x,t)>0 as xz—>o00, 0<t<t,. (3.5d)
Domain B, 0 <z < s(t), t > ¢,
u, = R(u), u >4, (3.6a)
u(x,t)—>i, as x—>s (), t>t,. (3.60)
Domain C, x = s(t), t > t,
Uy = Uy, +R(u), 0<u<wu, (3.7a)
u(s(t),t) = d,
u,(s(t),t) = 0, t>t, (3.7b, ¢, d)
w(x,t)—>0 as x— 00,
We shall also require
s(t,) =0, limu(x,t) = limwu(z,t), x>0. (3.8)
t—>t:‘; t—>t,

Here the interface C is given by x = s(t) with D, being domain B and D_ being
domain C.

We now make some observations concerning s(t). Since u(x, ¢) is piecewise-classical,
we obtain from (3.6a, b)

R(#@,)+su,(s(t),t) =0, t>t,. (3.9)
However, R(#,) > 0 and u,(s™(t),¢) < 0, which leads to
$(6) >0, t>¢, (3.10)
via (3.9). Following part I we may also arrive at the upper bound
s(t) S dgrA(t,) e, t >, (3.11)
where A(t,) = Jw u(zx, t,) de.
0

Thus, s(t) is a monotone increasing function in ¢ > ¢,, and remains bounded for finite
t > t,. We next consider domains A, B, C separately.

4. Domain A

Here we examine the initial-boundary value problem (3.5a—d) in domain A, which
we shall refer to as 1BvPA. We first examine (3.5a—d) on D,. It is readily established
via the comparison theorem for scalar parabolic operators (see, for example, Fife

1979) that
0<wu(x,t)<1 on Dg, (4.1)

Phil. Trans. R. Soc. Lond. A (1995)
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for any 7'> 0. The a priori bounds (4.1) then imply the global existence and
uniqueness of a solution to 1Bvpa (see, for example, Smoller 1983) with u(x,t)e
C*[Dr] for any T > 0. Moreover, a further application of the comparison theorem
gives

w(w, t) <wuye’ on Dy, (4.2)

for any 7'> 0. We can also apply theorem (3.1) of Aronson & Weinberger (1975),
which establishes that
u(z,t)>1 as t—o00, (4.3)

uniformly on compact intervals in «. In addition we have the following theorem.

Theorem 4.4. Let u(x,t) be the solution of iBvPA on Dy (any T > 0). Then

(i) u, <0,
and when ¢"(x)+ug* R(u,9(x)) = 0V 0 < 2 < o, with ¢’(0) =0,
(i) », = 0.
Proof.
(i) Since ueC®[Dy], then w = u, satisfies the following initial-boundary value
problem,
W, =0y, +R'(w)w on Dy, )
U9’ (x), 0<ze<o,
w(z,0) ={ od
0, x>0, (4.4)

w(0,0)=0, 0<t<T,

o(x,t)>0 as x— o0, O<t<T.J

We can now apply the parabolic maximum principle to (4.4) (recalling that
g’ (x) <0on 0 < x< o) (see, for example, Friedman 1964) to establish w < 0 on D,
as required.

(i) We consider first u(x,t) and g(z) on the domain D%, = (0, o) x (0, T'], and define
the operator

N[V)=V,~V,,~R(V) on Dj, (4.5)
for any suitably differentiable function V(z,t). We observe immediately that
N[u] = Nwu,g] on D%, (4.6)
while
u(xvo) 2 uog(x), xE[0,0'],
(o) > uyg(o), te[0,T), (4.7)
u,(0,1) < uy9,(0), te[0,T],

)
via (3.5b, ¢) and (4.1). Conditions (4.6, 4.7) together with the comparison theorem
then give

u(x, t) = uy,g9(x) on DY (4.8)
Therefore, from (4.1) and (4.8), we have
w(x,t) = u(x,0) on Dg. (4.9)
Now, for any & > 0, define w(x,t) = u(x,t+0), on Dy. Then
Nl =ZNu] on Dp, 0,0t <uy0,t), tel0,T], (4.10)

Phil. Trans. R. Soc. Lond. A (1995)
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366 D. J. Needham and A. C. King
while w(x,0) = u(z, §), and so
w(z,0) = u(x,0), xze[0,00), (4.11)

via (4.9). The comparison theorem, together with (4.10, 4.11) then gives
w(x,t) = u(x,t) on Dy. That is, u(x, t+8) = wu(x,t) in Dy, for any 6 > 0. Thus », = 0 on
Dy as required. [

Now, since u, < %, < 1 there exists a unique maximal ¢, > 0 such that
w(w,t) <@, on D, \{(z,t): x>0} (4.12)
via (4.3). Moreover, at t = ¢, u(x, t,) is monotone decreasing in x (via theorem 4.4) and
u(0,8,) = i, (4.13)
which requires s(t,) = 0, as anticipated in (3.8). From (4.2) we obtain the lower bound
t, > log (i, /uy). (4.14)

We may also follow part I and obtain the structure of u(z,t) for x > 1 with ¢ = O(1)

as,
1

doo tm+§

xm+1

w(x, t) ~ e~ (@At (4.15)

where d_, is a constant related to g(x), and meN such that g(x) = O([x—o]™) as
x—>o0". In particular, with w,(x) = u(z,t,), we have
uy(x) ~ (C/a™+Y) e /M ag x> o0, (4.16)

with C being constant.
The problem 1BVPA thus has a unique solution on D,, and we now consider
domain B.

5. Domain B

It is convenient to define the inverse function of s(¢), which we denote by 5(x), x >
0 (so that t = 3s(s(#)),Vt > ¢ ) with 5(-) being well defined via (3.10), (3.11). We have

x)=1/5(5(x)) >0 Va>0, (5.1)
5(0 ) =t (5.2)
The solution to (3.6a, b) can now be written implicity as
Hwuw)=t—3x), =0, t>3«), (5.3)
=Y da
h = S .
where H(y) jA=ﬂ(,R(/\) (5.4)
From (5.3, 5.4) we readily observe that @, < u < 1 at each x > 0 for all { > s(x), with
w(x, t) ~ 1—(1—1ii,) eRFOlt=5@=d (5.5)
as t—00, where
e~ [ s+ mm—s @
a, (B(A) R (1)(1=A))
Moreover, we have u, >0 for all ¢>s(x) while u,=—5(x)R(u) <0 for all
0 << s(),t>t, via (5.1), (5.3, 5.4). Therefore, for each x > O with ¢ > 3(x) we have

Phil. Trans. R. Soc. Lond. A (1995)
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that u(xz,t) - 1~ as t— 00, monotonically in ¢, and the fully reacted state is reached in
large time, with « fixed. However, when « = s(t), w = 4, for all ¢ > ¢, while v — 0 for
x > s(t) for all ¢. This indicates the formation of a travelling wave structure as {— oo,
which we shall investigate at a later stage in the paper.

6. The solution as ¢—>t/, breakthrough

It has been established in §4 that for all initial data ¢, is finite, and at
t =t,,u(x,t,) is monotone decreasing in x with u(0,¢,) = #@,. Moreover, either

u,(0,t;) >0 (6.1)
or there is Ne Z such that
0"u/0t" (0,t;) =0 Vn < 2N, (6.2)
while
021y /012N (0, £7) > 0. (6.3)

We examine here the structure of u(x, t) as >t and £ — 0, that is as breakthrough
occurs into u > #,. Thus we must examine the structure of u(z,t) in domains B and
C. At t =t,, we have, from §4, that

o0
w(,t,) ~ u,—a, 2+ X a,x", (6.4)
n=3

as x—0, with a, > 0. When condition (6.1) holds, then equation (3.5a) establishes
that
0<a,<iR,, (6.5)

where R, = R(#,). However, when conditions (6.2, 6.3) hold we have
Ay = %Rc' (66)

We expect the generic case to be 0 < a, < 3R, and we consider this case first. In
this case u,(0,¢,) = R, — 2a,, which, together with (6.4), suggests that s(¢) ~ O[(t— t)?]
as t—t7, and we expand

s(t) ~ X s, (t—t,)", (6.7)
n=1
with
G, + 3 F,(n)(t—t, )" in domain C,
n=2
u(p, t) ~ oo (6.8)
i, + 3 G,(n)(t—t,)" in domain B,
n=2

ast—t" with g = x(t—t,)* = O(1). We observe that the interface « = s(t) corresponds
to n = s(?) (t—t,)"% ~ s, +0(1) as t—>t;. We begin in domain C. On substitution from
(6.8), (6.7) into (3.7a—c) and (3.8), (6.4) we obtain the leading order problem for
Fyn). s, as
Fi+mly—F, = —R.,, 9>s,
Fy(s,) =0, Fiys,) =0, (6.9a—d)
Fy(g) ~ —a,n* as g0,
Phil. Trans. R. Soc. Lond. A (1995)
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which is an eigenvalue problem for s,. The general solution of (6.9a) is
0 o—s%/4
Fy(n) = CA+3 )+ E(1+3?) | ——55ds+R,, 5> s, (6.10)
y (14387

with C, E as yet undetermined constants. Condition (6.9d) readily gives C = —2a,,
after which conditions (6.9, ¢) require

B = [2a,(1+3s7)—R.]/(1 +%s$)J' F(s)ds, (6.11)
81
with F(s) = (1+1s?) "2 e "4 and
2“2 _ 1 _ s%/4 0 _
RO (HE) C J Fe)ds = Q6. (6.12)

which is to be solved for s;,. We observe from (6.12) that s, depends only upon the
parameter a,/R,, while an examination of §(s,) shows that

{1, 8,0,
Q(sl)a 0, 8 —> 00,
Q(s;) <0, s =0. (6.13)

Therefore, in this case, equation (6.12) has a unique, positive, solution s,, which is
monotone decreasing with 0 < a,/R, < 1, and

{0, ay/Ry 1, (6.14)
17000, ay/R, 0.

This completes the solution in domain C. To obtain the solution in domain B we
substitute from (6.8), (6.7) into (3.6a, b). At leading order we obtain

%"G;_GZ = _Rcv 0< n<$y,
Gz(sl) =O>

which has solution, .
Gy(n) = RAL—(1/s))7*}, 0 <7 <s,. (6.15)

We conclude that an interface develops at t}, and propagates away from x = 0 with
a singular velocity § = O([t—t,]7?). The jump in gradient at the interface is given with
use of (6.15), (6.7),

J(0) = uy(3(0)*, ) —uy(s(6)7,8) ~ (2R /8y) (=1, ), (6.16)
as t—>t!.
The degenerate cases a, = 3R, or 0 can be considered in a similar way. When
ay =0, then u(x,t,) ~ @, —ayy, x* as x— 0 for some M = 2,3,..., and a,,, > 0. It is
then readily established that

8(8) ~ O([E =t J'*M1), J () ~ O([t— 2 ]'7V/2M), (6.17)

as t—t}. The final case has a, = 1R, when (6.2), (6.3) hold for some N=1,2,.... We
establish that
$(t) ~ Ot =¥, J(t) ~ Ot =t ), (6.18)
as t—1i7.
Thus, in the generic case, the interface has an unbounded velocity as ¢t —>t!, as it
also does in the case a, = 0. However, in the case a, = 1R, the interface initiates its

Phil. Trans. R. Soc. Lond. A (1995)
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Evolution of travelling waves 369

motion with zero velocity. It should be noted that ‘slow’ fronts of the type (6.18) do
not occur in the continuous diffusivity case (part I) and that in all present cases the
gradient jumps at the interface are an order of magnitude larger than those
generated in the continuous diffusivity case. In addition we observe that in all cases
0<a, <R, $0)J() =0(1) as t—>1t, representing continuity of concentration flux
across the evolving interface.

7. Permanent form travelling waves

We expect that the long time development of the full initial-boundary value
problem (2.1)—(2.6) may involve the propagation of a travelling wave of permanent
form in « > 0, separating the unreacted state « = 0 ahead from the fully reacted state
u = 1 to the rear. Thus, before examining the problem in domain C, we examine the
possible class of piecewise-classical permanent form travelling waves that can be
sustained by the integral conservation law (2.1). We make the following definition.

Definition 7.1. A permanent form travelling wave solution (PTw) of the integral
conservation law (2.1) is a non-negative solution that depends only upon the single
variable z = x—y(t) (where y(¢{) is the wave-front position) and satisfies the
conditions #—0 as z—> 00 and #—1 as z—>—00. In addition, the solution should be
continuous and piecewise-classical for — o0 <z < o0.

We readily establish that a pTw has 0 < u(z) < 1 and is monotone decreasing in z.
Therefore u(z) is a solution of the boundary value problem

Uy +ou, +R(u) =0, 2>0, (7.2)
vu,+R(u) =0, 2<0, (7.3)
O0<u<d, 2>0, y<u<l, 2<0, (7.4)
u—>0 as z—>00, (7.5)

u—->1 as z—> —o0, (7.6)

w(0%) = w(07) = 4, (7.7)

u,(0%) = 0. (7.8)

In the above v = y(t). However, u is a function of z alone, which determines that v
must be constant, and without loss of generality we consider only v > 0. The problem
(7.2-7.8) is a nonlinear eigenvalue problem with the positive propagation speed v
being the eigenvalue. We study (7.2-7.8) in the phase plane.

(@) The phase plane

We consider first equation (7.2) for z > 0 in the (u,w) phase plane, where w = u,.
Equation (7.2) becomes the equivalent system
u, =w, w,=—vw—~R). (7.9)
This system has equilibrium points at e, = (0,0) and e, = (1,0). A solution of (7.2)
that satisfies conditions (7.4), (7.5), (7.7), (7.8) requires a directed integral path of the
system (7.9) connecting the point (@, 0) to the equilibrium point e,, lying entirely in
the strip 0 < v < 4,.
We observe first that the equilibrium point e, is a spiral for 0 < v < 2, becoming
a node for v > 2. Therefore a necessary condition for the existence of a solution to

(7.4, 7.5), (7.7, 7.8) is "> 2. (7.10)
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Figure 1. The minimum speed travelling wave u,(Z), when R(u) = u(1 —u) and 4, = 0.2,0.5,0.8.

However, it is also readily established that,
I={uw):0<u<l, —lus<w<0} (7.11)

in a positively invariant set for (7.9) for each v > 2, and so (via the Poincare—
Bendixson theorem) we conclude that condition (7.10) is also a sufficient condition
for the existence of a solution to (7.4, 7.5), (7.7, 7.8). We denote this solution by
u = u,(2),z > 0, and observe via (7.11) that u,(z) is monotone decreasing.

It remains to consider (7.3), (7.4), (7.6), (7.7) in z < 0. This problem has the
solution u = u_(z), where u_(z) is given implicitly by

1 (% dA

We observe that u_(z) is also monotone decreasing.
We have established the following.
Theorem 7.13. For each v = 2 there exists a unique PTW, given by
u,(z), z=0,
up(z) = { )
u_(z), z<0;
up(2) s monotone decreasing in z and has a single jump in gradient at z = 0, with
up(0%) —uy(07) = R /v.
For 0 < v <2, no prw exists. |

In the case when R(u)=u(l—u) and @, = 0.2,0.5,0.8,up(2) when v =2 (the
minimum speed PTW) has been computed numerically and is illustrated in figure 1.
We remark finally that for 4, < 1 we have

1/(A,—2A){A e~ —A_eM?), 0> 2,
w9 {(1+z)e‘z, v =2,

as @, —~0, where A, = }{ —v++/(v®*—4)}. We next consider the problem in domain C.
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Evolution of travelling waves 371

8. The problem in domain C

In §4 we have discussed the development in domain A, while the problem in
domain B has been completed in §5. Having established the details of breakthrough
in §6, we can now consider the problem in domain C in more detail.

We introduce the travelling coordinates y = x—s(¢) and 7 = t—1,, after which the
problem in domain C becomes

U, = Uy, +8(7) u, +R(u), y,7>0, (8.1)
w(y,0) = u,(y), y=0, (8.2)
u(0,7) =i, u,(0,7)=0, 720, (8.3)
u(y,7)~0 as y—>om, 720, (8.4)
5(0) =0, (8.5)

where u,(y) > 0 in a C° function, with asymptotic form (4.16) as y — c0 and (6.4) as
y—0. The problem (8.1)—(8.5) is an eigenvalue problem for s(7).

Following arguments similar to the proof of theorem (4.4), we can readily establish
that the solution to (8.1)—(8.5) has

0<wuly,7) <, u,ly,7) <0, (8.6)
with
0 < s(1) < @ At e, (8.7)
via (3.11). In examining (8.1)—(8.5) further, we shall restrict attention to the generic
case (detailed in §6), for which
0<—uy(0) <R, (8.8)

We begin by constructing the small time asymptotic solution to (8.1)—(8.5), which
has been partly established in §6. We now adopt a more formal approach.

Small time solution, T—0
With u(y,7) being the solution to (8.1)—(8.5) then boundary condition (8.3) with
(8.1) gives lim, o lim, _ u,,(y, 7) = — R, while initial condition (8.2) with (8.8) gives
lim, o lim,_ ¢ u,,(y,7) = u;(0) > —R,. Thus u(y,7) is not C* in a neighbourhood of
y = 7 = 0 and we do not expect a regular expansion as 7— 0. This lack of smoothness
indicates the present of an inner region where y = o(1) and = %,+o0(1) as 7 0. We
denote this as region I and write

Y =my(r),
u = i+ x(1) uy (7) +0(x(7)), (8.9)
3(1) = 3£ p(1) +o(P(7)),

with 7,7, u = O(1), ¥(7), x(1) = o(1) as 7— 0, and the order of ¢(7) to be determined.
In region I, initial condition (8.2) becomes u ~ #,+3u;(0) 7*y*(1)+... for 7> 1 as
70, which, on comparison with (8.9), requires x(7) = O(¥*(7)); so without loss of
generality we put

x(1) = Y*(r). (8.10)

In addition, after rewriting equation (8.1) in region I variables, via (8.9), a leading
order balance requires ¥y’ = O(1) and ¢ = O(y’) as 7—0. This leads to

Yr)=m1i, ¢(r)=717% x(1)=7 (8.11)
Phil. Trans. R. Soc. Lond. A (1995)
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372 D. J. Needham and A. C. King
as 7—>0. The problem at leading order in region I then becomes
wi+s(l+mu—u, =—R, 7>0,
u,(0) = u1(0) = 0, (8.12)
uy(7) ~ u(0)7* as oo,
where condition (8.4) has been dropped, and will be replaced by returning to the
expansion for ¥ when y = O(1) as 7> 0. As expected, (8.12) is an eigenvalue problem

for ¢, and is equivalent to the eigenvalue problem (6.9) under a shift of origin in 7.
Thus (8.12) has a unique solution, given by

ul(ﬁ) = F2(77+/)) / = 81) (813)

where F,(-) and s, are given by (6.10-6.14), with a, replaced by —iu/(0). Thus,
(8.9)~(8.12) give the leading order development of u and § as 7—0 with y = O(7%).
We next introduce region II in which ¥y = O(1) and 4 = O(1) as 7—0. We write

U = U (y) +v(1) % (y) +o(v(r)) as 70, (8.14)

with »(1) = o(1) as 7—0. On substitution from (8.14) into (8.1), a leading order
balance requires »(r) = 7%, after which we obtain

@y (y) = lug(y)- (8.15)

It is readily confirmed that expansion (8.14) with (8.15), as y—0, matches with
expansion (8.9) as 7— oco0. Finally we examine the expansion in region II for y > 1.
After use of (4.16) we have

Cc e_yz/‘“c 1

as 70 for y > 1. Clearly this expansion develops a non-uniformity for ¥ > 1, in
particular when y = O(r%) as 7—0. We therefore introduce region III, in which

A

7 =1 = O(1) as 7— 0, and expand
w = 7mDR o hater( Y () LB () ) (8.17)

as 7— 0, as suggested by (8.16). On substituting from (8.17) into (8.1) we obtain the
leading order problem as

Fotm+1/4—t;9F,=0, #>0, (8.18)

Fy=o() as 4 o0, (8.19)

i~ o™ ag >0, (8.20)
where (8.19) follows from (8.4) while (8.20) follows from (8.2) and matching to (8.16).
The solution of (8.18)—(8.20) is readily obtained as

Fy(f) = eimtm+D eile, (8.21)

and so the expansion in region III becomes

CT(m+l)/2 n2 A
u= Wexp{—g T+t1}{1 +0(n)}, (8.22)
(4 [

as 7—0. An examination of higher order terms shows that (8.22) remains uniform as
71— o0, and no further regions are required.
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The asymptotic structure is now complete. In particular, we observe from (8.9),
(8.13), (8.14), (8.15), (8.22) that u (y,7) becomes unbounded as 70,y > 0.

Asymptotic solution as y— o0

We next consider the asymptotic structure of the solution to (8.1)—(8.5) as y > o0
with 7 = O(1). The form of expansion (8.22) for 4 > 1 leads us to write

u=exp(H(y,1)), (8.23)
where
H(y,7) = ho(T) Y2+ hy(T) y + ho(T) logy + hy(7) +0(1) as y—> 0, (8.24)

with 7 = O(1). On substituting into (8.1) and solving at each order in turn, subject
to matching with expansion (8.17) (for 47 > 1) as 7—0, we obtain

___ 1 _1=35(7) _
hor) ==y T =Ty e = =),
1 log | "5(A) (1—3s(A) dA (529
h3(7)=(m+§)log(t—+1)+‘r+ At +logC.

From (8.25) we observe that
ho(T) ~ O(17Y),  hy(7) ~ O(s(r)77Y),..., as 7—> 00, (8.26)

since we expect s(r)—>o0 as 7—00. Therefore, expansion (8.23)—(8.24) remains
uniform for 7 > 1 provided y > s(7). We now consider the long time development of
the solution to (8.1)—(8.5).

Asymptotic solution as T— o0

For y > s(r), the long time development of u(y, 7) is given by (8.23) and (8.24).
However, a further region is required when y = O(s(7)) as 7— co0. In this region we
introduce the scaled variable 7 = y/s(7) = O(1) as 7— 0. The form of expansion
(8.23-8.24) then leads us to write

u(y, 7) = exp{[s*(1)/T] W(§,7)}, (8.27)
where W, 1) = Wo(g)+o(1) as 7—>00 (8.28)

with 4 = O(1). On substituting from (8.27), (8.28) into equation (8.1), a balancing of
terms leads to the order relation

881 = 0(s*/7%) as T—> 00,
which determines that
8(T) ~vyT+o0(T) as T—> 00, (8.29)

for some constant v, > 0 to be determined. The leading order problem for Wy(y) is
then
(Wo)*+(1+§) W+ (1/vg—W,) =0, §>0, (8.30)
W) ~—15* as §— o, (8.31)
which matches (8.27), (8.28) to (8.23), (8.24). The solution to (8.30), (8.31) is readily
obtained as
W) = —1(f+1)*+1/v5, (8.32)
after which we have
u~ exp{—vir[3(g+1)>—1/v;+0(1)]} (8.33)
Phil. Trans. R. Soc. Lond. A (1995)
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as 7— o0 with = O(1). The expansion (8.33) does not remain uniform as §—0; it
does not satisfy the boundary condition (8.3) at y = 0. We therefore require a further
region in which y = O(1) as 7 00 and we expand
u=uyy)+o(l) as 700, y=0(1).(8.34)
At leading order we obtain
Ug + v ug+R(uy) =0, y>0,
uy(0) = @y, uy(0) =0, (8.35)
Uy(y)~0 as y—o0.
This boundary value problem has been discussed in §7 ((7.2)—(7.8) with change of
notation u,>u,yz,v,v). In §7 it was established that (8.35) has a unique
solution, denoted by u_(y;v,) if and only if v, > 2. Thus we have
w~u(y;vy)+o(l) as 700, y=0(1). (8.36)
It remains to match expansion (8.36) (as y — 00), with expansion (8.33) (as 7 —0). We
match the expansion of | = logu, which are
L(g;7) = =g 7l3(@+1)* = 1/vl+o(1); 7—>00, §=0(1), (8.37)
L{y;7) = logu,(y;09) +o(1); 700, y=0(1). (8.38)
To match expansion (8.37) (to O(r)) with expansion (8.38) (to O(1)) requires
We—1=0, A, (vy) =—3- (8.39a, b)

Equation (8.39a) gives v, = 2, after which (8.39b) is satisfied automatically. This
completes the long time asymptotic structure of (8.1)—(8.5).

We have seen that in the long time a permanent form travelling wave develops in
domain C, and this has the minimum possible propagation speed v, = 2. This has
been determined by the form of the initial data u,(y) for y > 1, via matching from the
small 7 solution to the large y solution, to the large ¢,y solution, to the large 7,
y = O(1) solution.

We now confirm the asymptotic solution of this section by considering numerical
solutions of the full initial value problem.

9. Numerical method and results

As in part one of this work, the numerical solution of the reaction—diffusion
problem in x > s(¢) can be considered in isolation to the pure reaction problem. Once
the position of the interface is known it is simple to find the reaction zone solution
via numerical integration of u, = R(u). We use the same method of solving the
reaction—diffusion problem as in part I, and accordingly, only a brief description of
this is now given. If the position of the interface is fixed by using the transformation
£ =ux—s(t) we need to solve the moving boundary problem in the domain of
0<§{<00,0<t< 00,

Uy = Uge+ Sug+ B(u),
u(£,0) =g(&), w(0,t) =u, and wul0,t)=0, (9.1)
with u—-0 as £—->+o0 and s(0)=0.
Our analysis of the initial development of the interface indicates that § = 0(t%) as
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Figure 2. The solution of the initial-boundary value problem with R(u) = u(l—u), 4, = 0.2,
t. = 0.85, at the following values of t—¢.: (a) 0.0625; (b) 0.25; (¢) 1.0; (d) 2.25; (e) 4.0; (f) 9.0;

(9) 16.0.
t—0*. On introducing the time-like variable 7 = #: we force the initial velocity to be
O(1) and arrive at the modified system
U, = 2TUg + 8, ug+ 27R(u),
u(€, 0) = g(8),

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 3. A plot of $(t) versus (t—t ) for the initial-boundary value problem, with details as in
figure 2. -

with ¥ —0 as £~ 00 and s(0) = 0 in the domain 0 < § < 0,0 <7< 0. By using
finite difference approximations to the derivatives at the points £;,1 <i <N and
tj;1,5 2 0 we discretize equations (9.2) as a system of N+1 nonlinear algebraic
equations in the N+1 unknowns «/**,... u}* and ¢/*'. These equations are solved
iteratively at each time step by using a Newton method which, in general, was able
to converge to a solution in three iterations with use of only one initial jacobian
evaluation and produce a solution with an L, error norm of O(1078). In the solutions
presented below our spatial step was taken to be 0.1, the time step was 0.05 and the
extent of the mesh was 0 < § < 10. With this choice of parameters the solutions are
mesh independent, to within graphical accuracy, and the minimum speed travelling
wave is captured, in terms of its known speed of 2, to within less than 3% error. This
error arises principally from the truncation of an infinite domain and can be
improved, as discussed in part I, by the use of a larger computational domain.

Numerical results, for Fisher reaction kinetics in the form R(u) = u(1 —u) and
initial data in the form of a top hat of horizontal extent one unit and vertical extent
0.16 units when the diffusivity cuts off at 0.2 units, are shown in figures 2 and 3.
Critical conditions are reached at the origin when ¢, = 0.850. Figures 2 (a—c) shows
the initial development of the reaction and reaction—diffusion zones around the
moving interface. Figure 2(d-g) shows the approach to the long time travelling
wave structure predicted in earlier sections of this paper with the reaction zone
pushing out a constant speed interface at large times. The speed of the interface is
shown in this case in figure 3 and is seen to possess a (typical) minimum which
separates the initial singular interface speed from the more gradual approach to a
constant speed travelling wave.

10. Discussion

In part I and the present paper we have considered a scalar reaction—diffusion
process, with autocatalytic kinetics and nonlinear variable diffusivity, as a simple
model for a polymerization process. Here we have considered the case where, at low
concentration, the diffusivity of the polymer solution is non-zero and approximately
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Table 1

(@) u(z,t,) ~d,—a,2*+...;0 <a, <iR,. (b) u(xt)~ G, —a,2*+...;a, = 3R (),a, = iR, (II). N
defined in (6.2, 3). (¢) u(x,t,) ~ @, —a,, 2 +...;0,, > 0,p = 2,3,4....)

part I part II

§(t) J(t) §(t) J(t)

O(1 1. O([t—t.J}) O([t=t,J F) ot
O([t—t,]%) O([t—t,]) O([t—1t,]7%) o([t—t ™)
O([t—=t.J) O([t—t =) O([t=t,]*7) O([t—t,]'7)

PN
R
-

3)
~

constant, on [0, %], but suffers a rapid reduction at the critical concentration @, and
is thereafter, (#,, ), zero, with the polymer being immobile. The fully reacted state
is reached at w = 1, when the polymer is fully immobile. We have again considered
the situation that arises when a localized quantity of polymer is used to initiate the
reaction. This leads to an initial-boundary value problem for w(z,?) in z,¢ > 0, and we
examine piecewise-classical solutions to this problem. The initial data for w(z,t) is
continuous, monotone, with compact support. We have found that

(1) wu(a,t) is classical for 0 <t <¢,, and monotone decreasing in u. The support of
u(z,t) becomes unbounded at ¢ = 0*.

(ii) an interface develops from x = 0 at ¢t = ¢} and propagates into x > 0 in ¢ > ¢,.
This interface at x = s(t) separates u > u, (in 0 <z < s(f)) from 0 <u <wu, (in
x > s(t)) and represents a ‘freezing’ front for the polymer, i.e. the polymer is
immobile for 0 < x < s(f) while it is in solution for xz > s(t).

(iii) as ¢— 00, the system approaches a permanent form travelling wave structure,
selecting the travelling wave of minimum propagation speed. In line with this
$(t)—~>2 as t— oo and a quasi-steady polymerization interface is established.

(iv) numerical evidence suggests that $§(!) has a single minimum in (¢, ).

All of the above qualitative features were also present in part I, when the
diffusivity was reduced to zero at u = @, in a continuous rather than abrupt manner.
However, a number of significant quantitative differences appear, which are
associated with the interface between ‘frozen’ and mobile polymer. In both cases,
the interface develops from x = 0 at ¢ = ¢} and propagates into x > 0 in ¢ > ¢,. The
quantitative differences that occur as ¢} are summarized in table 1. From this
table we observe that in all cases the gradient jump in u(z, ¢) is an order of magnitude
stronger for discontinuous diffusivity than for continuous diffusivity, as ¢ ;. For
continuous diffusivity J(f)—>0 as t—¢} in all cases. However, for discontinuous
diffusivity J(t) is unbounded as ¢ — ¢} in (b). Similarly, for continuous diffusivity s()
is unbounded as ¢t} in all cases, while §(¢) >0 as t—>t; in (b) where the diffusivity
is discontinuous. It may be expected that these order of magnitude differences should
be observable experimentally.
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